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Continuous mechanical systems can be characterized through analysis of discrete linear
models. Such models can provide approximations for the eigenvalues and eigenvectors
(collectively, &&eigenparameters''). Although the eigenparameters do not qualify as measures
for the state of the system in response to speci"c loading and boundary conditions, they
do re#ect the identity of the system, and this in itself has important applications. In
particular, the eigenparameters can be used to study the sensitivity of a system to
perturbations, due perhaps to damage incurred by one or more discrete elements. These
studies can rationalize the choice and weighting of eigenparameters for system identi"cation
strategies, damage detection algorithms, and damage assessment methods. To this end, this
paper develops a set of sensitivity coe$cients based on gradients of the eigenparameters.
Sensitivities are normalized with respect to that of the harmonic oscillator, and generalized
to include the mode vectors through the de"nition of a "gure of merit. Analytical and
numerical examples based on appropriate elements are used to illustrate the utility of the
approach.

( 2000 Academic Press
1. INTRODUCTION

The ability to diagnose changes in a mechanical system is a key part of maintaining the
original performance of the system. An important part of the diagnosis procedure is the
selection of an appropriate mathematical model and of measurables of the model which are
sensitive to changes deemed signi"cant with respect to some design criterion [1}3]. Even in
the context of linear models, the selection of such measures, and the evaluation of their
sensitivities, is a di$cult and largely unresolved problem. For example, modal frequencies
[2] and modal vectors [3] are often assumed (or dismissed) as the basis for system measures.
This is despite the fact that in many cases the sensitivities of these parameters (or objective
functions based upon them) have not been investigated in systematic detail, although
scattered theoretical and computational results have been reported. These will be reviewed
in section 3. The purpose of this paper will be to propose a sensitivity coe$cient based upon
gradients of the eigenparameters, and to demonstrate its use for both eigenvalues and
eigenvectors.
22-460X/00/320299#18 $35.00/0 ( 2000 Academic Press
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It will be insightful to begin with a one-degree-of-freedom (d.o.f.) system*the simple
harmonic oscillator*for which the key measurable is the natural frequency, u. The
sensitivity of u can be established in an unambiguous manner as follows:
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Using this sensitivity with a "rst order Taylor expansion about u
0

leads to the relative
frequency sensitivity (to sti!ness), which will be denoted by ru:
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i.e., a 1% change in sti!ness is re#ected by a 0)5% change in frequency. If a ,gure of merit is
de"ned as the ratio

b $%&"

2ru
Dk/k

, (3)

it follows that b"1 for the simple harmonic oscillator.
Realistic systems have a large number of degrees of freedom, or are continuous systems

which can be analyzed experimentally and computationally as such [4}6]. In order
to generalize the previous concepts to such systems, consider a linear, time-invariant,
undamped system described as [7]

M ) x#K ) x"0. (4)

M and K denote the mass and sti!ness tensors. For many systems of interest, the
components of K will form a symmetric matrix, and the number of independent parameters
will be substantially less than n2. Let k denote the vector which parameterizes the
eigenproblem [8]. An assumed modes analysis of equation (4) leads to the well-known
eigenvalue problem

[jM!K (k)] ) x"K d ) x"0, (5)

where Mj
i
, x(i)N denotes the set of eigenvalues and eigenvectors, respectively, and Kd is the

dynamic sti!ness tensor. It is satis"ed only for certain values of j
i
(the eigenvalues) and x(i)

(the eigenvectors). It is assumed that the eigenvalues are real and distinct in this paper. The
importance of the eigenproblem is that it is the basis for a separated space}time solution
using the modal tensor constructed from the eigenvectors and de"ned by

XK "x; (j)?e
j
"xL (j)

i
e
i
?e

j
. (6)

This is the basis for the linear transformation for an arbitrary displacement vector x:
x"XK ) g through which the kinetic and potential energies may be expressed as quadratic
forms: ¹-"1

2
g5 )g5 , and <-"1

2
g )K ) g in the generalized coordinates g. Lagrange's equations

then lead to a set of uncoupled oscillators for which n sensitivity coe$cients are well de"ned
in principle, similar to equation (1).
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2. EIGENVALUE AND EIGENVECTOR GRADIENTS

The natural avenue for examining perturbations of parameterized tensors is to calculate
an appropriate gradient and then to linearize using a Taylor series. Research in the area of
eigensolutions of equation (5) has progressed along two lines. The "rst has been devoted
toward rigorously establishing di!erentiability conditions. Lancaster, 1964 [9] examined
the properties of the eigenvalue problem (with M"I ). Andrew, 1979 [10] extended the
analysis in examining an iterative method of Rudisill and Chu, 1975 [11]. More recently,
Gollan, 1987 [12] examined the parameterized eigenvalue problem for symmetric matrices
and established di!erentiability of simple eigenvalues about vector-valued parameters.
Over ton, 1992 [13] has addressed problems related to min}max optimization of the
eigenvalues. Nylen and Uhlig, 1997 [14] examined a di!erent, but related problem* that
of an inverse perturbative problem. These studies address important foundational issues,
but generally have not concerned themselves with applications to speci"c problems.

The second line of research has been largely applied, with a particular emphasis on
methods for e$cient calculation of the eigenparameter gradients appropriate for large
systems (when truncation of modes is usually the case), or for particular degeneracies.
This body of literature is quite extensive. Fox and Kapoor, 1968 [15] provided several
expressions for the derivatives of the eigenvalues and eigenvectors, and applied the former
to two very simple structures. More importantly, they popularized the modal expansion
method, which could be applied (albeit, with a degree of approximation) to large systems for
which incomplete modal information was available. Taylor, 1975 [16] presented analytic
results for the quadratic eigenvalue problem. Nelson, 1976 [17] derived a direct method for
the "rst eigenvector derivatives valid for the case of non-repeated eigenvalues. Yuen, 1985
[18] numerically studied changes in the eigenparameters as a function of location for
perturbations in the elasticity modulus and area moment of a cantilever. Adelman, 1986
[19] provided a comprehensive survey encompassing several disciplines, dating back to
work by J. Jacobi in 1846. Lim et al., 1987 [20] provided a comprehensive list of expressions
for the general non-self-adjoint eigenvalue problem which clari"ed misconceptions
regarding the eigenspaces associated with eigenvector derivatives. Bernard and Bronowicki,
1994 [21] extended the modal expansion method for cases associated with repeated roots of
self-adjoint systems. The accuracy of the method was evaluated on 18 modes (out of 30) of
a test structure; eigenparameter derivatives compared favourably with "nite di!erence
estimates. Chen et al., 1994 [7] proposed a second order perturbation method to examine
the changes of the eigenpairs of structures. They provided numerical examples for
a 15-element truss structure. They found increased accuracy against an alternative method,
particularly for eigenvalues. Chen, 1995 [22] extended the method of Fox and Kapoor, 1968
[15] for eigenvector derivatives for doubly repeated eigenvalues under restrictions on the
sti!ness perturbations. Alvin, 1997 [23] examined numerical estimates of eigenvector
sensitivity calculations for distinct roots using a preconditioned conjugate projected
gradient algorithm, and evaluated the accuracy for a large system ('102 d.o.f.) and found
improved accuracy, particularly for higher modes.

Despite the extent of these results, there has been little discussion regarding the relative
sensitivities of the di!erent eigenparameters to multiple parameters, as occurs in designing
measurement systems for damage detection studies, and in interpreting the resulting data.
The brevity of discussion in this area may re#ect prior emphasis on optimization problems,
where a small subset of easily modi"ed design parameters is selected beforehand. In order to
proceed in this direction, take the inner product of equation (5) with x(i), and di!erentiate
with respect to the independent components of K as follows:

d
,k
Mx(i) ) [j

i
M!K (k )] ) x(i)N"0. (7)
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It is assumed that M is constant, which is a reasonable assumption when examing changes
for most mechanical systems. It is straightforward to show that the eigenvalue gradients can
be expressed in the form [15, 12, 20]

j
i
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&k

"

x(i)?x(i) : K ?$
&k

x(i)?x(i) : M
, (8)

where K ?$
&k denotes the linear transformation relating d

,k
K and dk. In simple problems,

one usually has analytical expressions for the j
i
, and the gradients can be calculated

directly. If the customary normalization of the eigenvectors to M is performed,

x( (i) )M )x( (i)"1, (9)

the gradient in equation (8) can be simpli"ed as
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This is the analogous expression to equation (1) for higher d.o.f. systems. Equation (10) can
be used to develop an eigenvalue sensitivity through a Taylor series expansion in k:
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where u
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0
#Dk). Reference [9] provides properties of the coe$cient derivatives

when M is the identity tensor. Dividing by u
i
gives the relative change due to a perturbation

in k [2]:
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The quantity ru in equation (12) becomes the appropriate measure for analysis of the
eigenvalue sensitivities when changes in sti!ness are scaled:
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Equation (13) is the desired generalization of equation (2), for which we have been unable to
"nd a systematic analysis. The quantity ru is an estimate of the directional derivative in the
direction ek"Dk/EkE, which is one independent parameter of interest.

A similar analysis can be applied to the eigenvectors [15, 24}27], although it will be more
convenient to take the derivatives of the eigenvectors directly. The eigenvector gradients
can be used to approximate the ith perturbed eigenvector, again using a Taylor series:
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Relative comparisons among eigenvectors requires an inner product norm. The obvious
choice is

c"x( (i)
0
)M )x( (i)

p
. (15)
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The norm in equation (15) is unity for x( (i)
p
"x( (i)

0
, and zero for x( (i)

p
"x( (j)

p
, iOj. This may be

compared to a common heuristic called the modal assurance criterion [3] which is
sometimes used to access the &&correlations'' among eigenvectors:

MAC"

(x(i) )x(j))2
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. (16)

Here, x(i) and x(j) denote &&di!erent'' modes. However, the normalization criterion equation
(9) implies the following relation [10, 20]:

x; (i) )M )x( (i)? $
&
"0. (17)

As a result, estimating x( (i)
p

requires at minimum a second order calculation. We have not
encountered an analysis where this information is used in the context of classifying the
sensitivities of the eigenparameters. Using equation (14), it is straightforward to show
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since c
0
"1. This is the desired generalization of equation (12). The quantities ru and rx will

be referred to as eigensensitivities. A "gure of merit for the eigenvalues similar to equation
(3) may also be de"ned using equation (18).

3. NUMERICAL EXAMPLE

The application of equations (12) and (18) to an arbitrary system described by equation
(4) can be daunting due to algebraic and computational complexities. In this section, the
calculation of eigenparameter sensitivity coe$cients is demonstrated using a two-d.o.f.
model, and the directional sensitivities are restricted to variations in one sti!ness element at
a time. Higher order systems are considered in the following section. The system, which may
be considered the discrete model for longitudinal vibrations of a bar, is shown in Figure 1.
The mass and sti!ness matrices for this system are
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The generalization for higher order systems is obvious. The "rst eigenpair is
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Figure 1. A two degree of freedom system.
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The second eigenpair is

j
2
"

(k
1
#2k

2
#k

3
)!Jk2

1
#4k2

2
#k2

3
!2k

1
k
3

2m
,

x(2)"
(k

2
#k

3
)!j

2
m

k
2

e
1
#e

2
"

k
3
!k

1
!Jk2

3
!2k

1
k
3
#4k2

2
#k2

1
2k

2

e
1
#e

2
. (21)

In order to investigate the eigensensitivities, it is reasonable to focus upon two limiting
parameterizations of K, corresponding to a symmetric sti!ness perturbation, and an
asymmetric perturbation. These cases will be referred to as cases A and B, respectively.
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The corresponding sti!ness tensors are
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respectively. For case A, the eigenparameters simplify to the expression
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with the smaller eigenvalue corresponding to the in-phase mode. The eigenvalue gradients
are
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The eigenvector gradients, calculated directly, vanish identically:
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Using the results from equation (24) with Dk"Dk
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, the eigenvalue sensitivities

can be expressed as
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using either of equation (13). For case A, perturbations satisfy Dk
1
"0, and all change in

K arises from the center spring element, k
2
. If the sensitivity coe$cient for this situation is

denoted by ru
A1,k2

, then clearly from equation (26),
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"0. (27)



Figure 2. Eigenfrequency sensitivities ru
A1,k2

in equation (28), and ru
A2,k2

. The line ba/1
"1 is the sensitivity for

the harmonic oscillator.
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Hence, the lowest frequency sensitivity is uncoupled from k
2
. The eigenvalue sensitivity of

the second mode can be written as
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where k
2
"ak

1
, and a is the value of the original sti!ness of k

2
expressed as a fraction of

k
1

(and k
3
). a is adopted as the second independent variable for this study. It is assumed

here that a3 (0, 1], so that &&degenerative'' perturbations are considered, and separate
elements remain coupled, however weakly. However, in principle a can be any positive real
quantity.

The behaviours of ru
A1,k2

and ru
A1,k2

is shown in Figure 2 as a function of Dk
2
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2
and a. For
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, the greatest sensitivity occurs when all springs have comparable sti!nesses (a"1),
and is a monotonic function of Dk
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results in a 3% change in u
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. Quantitatively, the "gure

of merit is given by
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from which it follows that max b
A2,k2

"2
3
. The eigenvector sensitivities for case A are, of

course, zero in view of equation (25), regardless of a. This is a re#ection of the high degree of
symmetry, and small value of n.
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This analysis can be repeated for case B. The eigenpairs for this case are
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The eigenvalue gradients are
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In case B, the interest is sti!ness reduction at the end, i.e., k
3
(k

1
, and Dk"Dk

3
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2
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sensitivity coe$cient becomes

ru
B1,k3

"

1

8mu2
B1
C1!

k
3
!k

1
J5k2

1
#k2

3
!2k

1
k
3
D Dk

3

"

a

(2a!4)Ja2!2a2#5#2a2!4a#10

Dk
3

k
3

(32)

The behaviour of ru
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as well as ru
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, which is given by
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are shown together in Figure 3.
It can be shown from equation (32) that bu
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2
and from equation (33), that
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. The maximum sensitivity occurs for k
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. As k
3

becomes smaller relative to k
1
and k

2
, the sensivity coe$cient ru in both
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tends to zero.
The eigenvector sensitivities rx for case B are algebraically complex. The results were

obtained by parameterizing the eigenvectors in terms of a, as follows:
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Figure 3. Eigenvalue sensitivities ru
B1,k3

and ru
B2,k3

for case B.
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The eigenvectors reduce to those of the homogeneous system with aP1, as expected. The
eigenvector sensitivities de"ned by equation (18) then become
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The gradients were evaluated using the outermap facility in Macsyma [28]. These results
imply that, if bx is de"ned at a"1, the eigenvector "gures of merit for the two modes are

bx
B1
"1/16, bx

B2
"1/16. (36)

The de"nition of bx has included a factor of 2, to be consistent with the de"nition of bu.
A negative sign is also necessary to account for the second order nature of the sensitivity
Figure 4. Eigenvector sensitivities rx
B1,k3

and rx
B2,k3

.

TABLE 1

b for 2-d.o.f. model

Model u
1

u
2

x; (1) x; (2)

A 0 2/3 0 1/16
B 1/2 1/6 0 1/16
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and the behaviour of the inner product. The "nal results are plotted in Figure 4. The
eigenvector sensitivity is seen to increase with mode number.

The FOMs are summarized in Table 1, and this presentation is especially useful for gaging
all the eigensensitivities in toto. Perhaps the most useful observation is that certain
eigenparameter sensitivities (both eigenvalue and eigenvector) may vanish identically, which
is fairly well known. On the other hand, despite what may be called conventional wisdom,
there is evidently no basis to favour the eigenvector inner product over the more sensitive
eigenvalue measures, particularly when the goal is to identify the onset of small Dk's.

4. DISCUSSION

The small number of elements in the previous example enforces symmetry to a certain
extent. The analysis can be extended to n"4 in order to generalize the results. Again, the
parameter k

2
will be the element varied, and eigenvalue gradients will be calculated for
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, and evaluated at selected values of a and Dk"Dk
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. For n"4, there

are three cases of interest: perturbations of the centre element, intermediate element, and an
end element. The sti!ness components for these cases are
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The problem is simpli"ed somewhat by de"ning a dimensionless eigenvalue, j*"j/j
0
. The

modi"ed eigenproblem becomes x2j*I!K*y "0, where the dimensionless K* are given by
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0 !a 1#a !1
0 0 !1 2D , C

1#a !a 0 0
!a 1#a !1 0

0 !1 2 !1
0 0 !1 2D ,

C
1#a !1 0 0
!1 2 !1 0

0 !1 2 !1
0 0 !1 2D , (38)

respectively. The eigenvalues for case A are

j*
i
GG

(3!J5)

4
, !

J4a2!4a#5!2a!3

4
,
(3#J5)

4
,
J4a2!4a#5#2a#3

4 H . (39)

For a"1, all cases reduce to j*
i
GM0)19098, 0)69098, 1)30902, 1)80902N, which split

symmetrically about unity, consistent with n"4. The sensitivity coe$cient bu can be



Figure 5. (a) Eigenfrequency sensitivities ru*

A1,k2
, ru*

A2,k2
, ru*

A3,k2
, and ru*

A4,k2
. (b) Discrete model and

eigenvectors*k
2

is the centre spring.

Figure 6. Eigenfrequency sensitivities ru*

B1,k2
, ru*

B2,k2
, ru*

B3,k2
, and ru*

B4,k2
.
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obtained using the direct procedure via the chain rule

ru*
"

a
2j*

dj*

da
Dk

2
k
2

. (40)



Figure 7. Eigenfrequency sensitivities ru*

C1,k2
, ru*

C2,k2
, ru*

C3,k2
, and ru*

C4,k2
.

TABLE 2

b* for 4-d.o.f. model

Model u*
1

u*
2

u*
3

u*
4

Case A (112) 0 0)4 0 0)4
Case B (121) 0)45212 0)0276 0)45212 0)0276
Case C (211) 0)62666 0)23936 0)23936 0)62666
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This incidentally provides an interpretation for b, b"d ln j*/d ln a. The eigenvalue
sensitivity coe$cients for the three cases are plotted in Figures 5}7. The FOMs are
summarized in Table 2.

The sensitivity coe$cients show a complicated behaviour, the most notable feature of
which is perhaps the vanishing of bu for certain cases. Insight into this behaviour is
provided by examining the homogeneous eigenvectors (which are sketched in Figure 5):

x; (1)GM0)37175, 0)6015, 0)6015, 0)37175N m~1@2,

x; (2)GM0)6015, 0)37175, !0)37175, !0)6015N m~1@2,

x; (3)GM0)6015, !0)37175, !0)37175, 0)6015N m~1@2,

x; (4)GM0)37175, !0)6015, 0)6015, !0)37175N m~1@2. (41)

Evidently, at least for case A, b"0 for those modes which are symmetric about k
2

(modes
1 and 3). In all cases, there is curious pairing of bua/1

.
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The discrete d.o.f. correspond to spatially distributed locations in a continuous system,
and this observation leads to a quanti"cation of an important result. Simply, the sensitivity
f eigenparameters (and objective comparison functions based upon them) to changes in
sti!ness demonstrate a pronounced spatial dependence. Moreover, the sensitivity is also
a function of the original sti!ness a. This later observation is important if one is searching
for changes in an already &&damaged'' structure, for instance.

In general, eigenparameter sensitivities are strong functions of the form of the sti!ness
matrix, and we brie#y present a contrasting example to the bar model intended to guide
analysis of the structure (a prestressed multispan segmental concrete bridge) shown in
Figure 8. Sensitivities were examined by simulating sti!ness perturbations through
reductions of the #exural rigidity using the global mass and sti!ness matrices from a discrete
"nite element model. These are given in equations (42) and (43) for a three-node (two
element) model based upon Hermite nodal basis functions [30]. The model is easily
extended to a larger number of elements by inspection:
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Figure 8. Views of (a) the Kiswaukee bridge and (b) top deck.

Figure 9. Figure of merit b as a function of location of damage for EI"0.5EI D
0

for a hinged}hinged beam.
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The corresponding natural frequencies for the continuous system are given by

u
i
"S

EI

oN A
in
¸B

2
, i"1, 2,2. (44)

For ¸"76.2 m, EI D
0
"1.52]1012 N m2, and oN "17564.2 kg/m, the natural frequencies

are 2.517, 10.067, and 22.650 Hz. The parameters are based upon a single span of the
structure shown in Figure 8. The natural frequencies of the discrete model are 2.515, 9.960,
and 21.697 Hz. The sensitivities for a 20-element model are shown in Figure 9. In contrast to
bar-like structures, it is the asymmetric modes which show no response to symmetric
damage.

The results from the 20-element model were compared to a much more sophisticated
FEM model developed from design drawings, using 16 092 elements with the ABAQ;S
code [29]. The general nature of the spatial dependence of the frequency sensitivities agreed
with those in Figure 9.

Accurate estimates of the (mass normalized) eigenvectors were available from ABAQUS.
These were used to study the behaviour of the eigenvector inner product to reductions of the
#exural rigidity in the middle of a span. The results are shown in Figure 10. The behaviour
of the MAC agrees with the analysis presented earlier in this paper.



Figure 10. Inner product between x(
0

and x;
p

for perturbation at midspan**, "rst mode, }} }, second mode,
) ) ) ), third mode.
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The decision to concentrate upon modal updating procedures using the ("rst order
sensitive) modal frequencies was based upon the previous observations, and to initiate
continuous monitoring of ambient-excited modal frequencies. The sensitivity calculations
provide the basis for selecting the appropriate record lengths required to resolve small
frequency perturbations at selected locations. (While the measurements are well within
current technology, it should be noted that the dependence of the modal frequencies to
temperature must be removed [31, 32].) As a cautionary note, we emphasize in addition
that the results from both mechanical systems discussed in this paper indicate that the loss
of sensitivity of the eigenparameters does not constitute a su$cient condition for
concluding an absence of alterations in element sti!nesses.

5. SUMMARY

This paper has addressed the quanti"cation of eigenparameter sensitivities for discrete
linear systems from a very basic perspective. A sensitivity coe$cient b based on
a normalization to the sensitivity of a single-degree-of-freedom system was formulated for
eigenvalues and extended to eigenvectors in a simple way. The use of these coe$cients was
examined using a discrete model of a bar. It was found that the normalized sensitivity
depends upon the location incurring a perturbation. The maximum sensitivity generally,
but not exclusively, occurs when all elements have the same sti!ness. Bars with existing
&&damage'' show greatly reduced sensitivities. An inner product for the eigenvectors, similar
to the MAC, has a second order dependence on sti!ness perturbations; numerical results
suggested sensitivity an order of magnitude smaller than the eigenvalues. A numerical
eigenvalue analysis was applied to models of a beam. While speci"c di!erences were
identi"ed, the same general cautionary statements apply unchanged. The choice of suitable
eigenparameters for system identi"cation and damage assessment should begin by
identifying location and mode sensitivities.
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APPENDIX A: NOMENCLATURE

( denotes a mass-normalized eigenvector
x(i) ith eigenvector
X< modal tensor
j
i

ith eigenvalue
j
0

eigenvalue associated with a single mass and two spring elements ("2j
f
)

j
f

eigenvalue for free oscillator (k/m)
j* dimensionless eigenvalue
M mass tensor, dim M"n]n
K sti!ness tensor, dim K"n]n
Kd dynamic sti!ness tensor
k parameterization of K
K eigenvalue tensor
ru frequency sensitivity coe$cient
rx eigenvector sensitivity coe$cient
MAC modal assurance criterion
b "gure of merit
a ratio of sti!ness elements
D denotes a small perturbation
u angular frequency
$
&k left gradient operator w.r.t. sti!ness parameters k
e Cartesian base vector

i
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